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The stability of the decaying laminar flow in a suddenly blocked channel is 
investigated. The partial differential system governing the stability of the flow 
is solved using a WKB type of approach. It is shown that the first term of the 
WKB expansion of the disturbance velocity field is just that obtained by a 
quasi-steady approach. The flow is found to be unstable a t  quite small Reynolds 
numbers. This instability is associated with the inflexional nature of the velocity 
profiles of the decaying flow. 

1. Introduction 
The laminar decay of a fully developed flow in a pipe or channel which is 

suddenly blocked by, for example, the rapid closure of a valve was the subject 
of a recent paper (Weinbaum & Parker 1975). That paper, hereafter referred 
to as I ,  was motivated by an interest in the stability of decelerating flows aroused 
by the observation of disturbances which appear during the deceleration phase 
of aortic blood flow (see for example Nerem & Seed 1972). 

The basic flow discussed in I develops on two separate time scales. The first 
is a short time scale h/c, where h is the channel half-height and c is the speed of 
sound in the fluid, which is characteristic of the time of passage of a pressure 
wave. 

The second is a longer time scale h2/v, where v is the kinematic viscosity. This 
time is characteristic of the rate of diffusion of momentum. 

Immediately after the channel is blocked, the flow adjusts to the new boundary 
condition of zero net flow by means of a pressure wave. This adjustment occurs 
on the short time scale. In  the incompressible limit, it is simply an impulsive 
uniform deceleration of the entire velocity profile by an amount equal to the 
average velocity of the initial, undisturbed profile. 

The flow immediately after the passage of the pressure wave satisfies the 
condition of zero net flow but results in a slip velocity at  the wall. In  order to 
satisfy the no-slip condition a t  the wall a boundary layer develops on the longer 
diffusion time scale. For full details of the calculation of the flow during this time 
the reader is referred to I. We note simply that an approximate solution was 
obtained using a Pohlhausen technique. 

In  this paper we investigate the linear stability of the flow described above 
using a quasi-steady approach. Thus we fix upon a particular profile at  some 
time and consider the stability of this profile as if it  were a steady flow. This is 
justifiable if there exists a fast time scale on which a disturbance can grow before 
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the basic flow changes significantly. In  such a case, the quasi-steady approach 
can be shown to represent the first term of an asymptotic expansion of the WKB 
type. We shall see that this type of approach can be justified in the problem 
considered in this paper. The WKB method has previously been used in un- 
steady hydrodynamic stability theory by Rosenblat & Herbert (1970) and 
Seminara & Hall (1975) and was first suggested by Benney & Rosenblat (1964). 
The method has also been used for spatially slowly varying flows by Bouthier 
(19731, Gaster (1974), Drazin (1974) and Eagles & Weissmann (1975). 

The procedure adopted in this paper is as follows. In  $ 2  we formulate the 
differential system governing the stability of the flow discussed in I. In $ 3  we 
obtain an asymptotic solution to this system in the limit of large Reynolds 
numbers. In  $ 4 we discuss the results obtained in § 3 and show how they can be 
related to the results of an inviscid analysis. 

2. Formulation of the problem 
Suppose that for times i? < 0 we have fully developed flow in a two-dimensional 

channel defined by -a < X < co, -h  6 Y < h. If u is the velocity along the 
channel we have 

The laminar decay of this profile when a valve is closed at  time f = 0 has been 
discussed in I. We shall concern ourselves only with the stability of this flow 
when it is developing on the diffusion time scale t, = h2/v. We first define the 
following dimensionless variables : 

x = X / h ,  y = Y/h, t = Y t D .  ( 2 . 2 ~ )  b, c) 

We further restrict our attention to a region far enough away from the valve so 
that the basic flow can be considered unidirectional. Calculations in I for the 
flow near the valve showed that this condition is satisfied at  distances greater 
than about two channel heights from the valve. In  this region, and on the diffusion 
time scale, the non-dimensional velocity of the flow in the x direction is the 
function u(y , t )  evaluated in I. It should also be pointed out that the experi- 
mental observations made on a pipe showed that the instability did not arise 
near the valve. 

It is instructive at  this stage to point out the important feature of u(y, t ) .  
Some typical profiles of u(y ,  t )  for different values oft  are shown in figure 1.  For 
each value of t there exists an inflexion point in the interval 0 < y < i. This 
immediately alerts us to the occurrence of inflexion-point instabilities, since we 
know from steady inviscid stability theory that the existence of an inflexion 
point is a necessary condition for instability. However it is dangerous to infer 
that such instabilities necessarily occur for a time-dependent flow. For example 
the results of von Kerczek & Davis (1974) show that a Stokes layer, which can 
have one or more inflexion points at  different times, is stable at  least up to 
Reynolds numbers of about 750. Von Kerczek & Davis argue that the profiles 
do not live long enough for any instability associated with the inflexion point to 
grow. 

(2.1) u = [&(I - Y2/h2). 



Stability of decayingjlow in a suddenly blocked channel 307 

U u -0.20 

0 

0.20 

0.40 t = 0.OU I " -t" - 
FIGURE 1. The basic flow velocity profiles at different times. x x x , the most unstable 
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The crucial question in our problem is whether there exists another (fast) 
time scale on which an instability can grow before the profiles change significantly. 
With this in mind we consider the convective time scale t, = h/U,, and thus 
define a dimensionless time scaled on t, by writing 

T = i?/t,. 

If this time scale is to be short compared with the diffusion time scale we require 
that tD/t, = U, h/v = R 3 1. 

Thus for large values of the Reynolds number R we expect inflexional insta- 
bilities to occur. Suppose that we perturb (two-dimensionally) the flow (u, 0) 
such that the stream function @(x, y ,  t ,  T )  of the disturbance is of the form 

@(x, y, t ,  T )  = d"(y, t ,  T )  exp {iax} + complex conjugate, (2.3) 

so that the disturbance is periodic in the flow direction. If the amplitude e of 
the disturbance is allowed to tend to zero it is an easy matter to show that, 
neglecting; terms of order e2, Y is determined by 

20-2 
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We also require that the disturbance velocity is zero at  the wall. Thus Y must 
satisfy the following boundary conditions : 

Y = a y / a y  = 0, y = I. (2 .5 )  

In  the next section we obtain an asymptotic solution of (2.4) and (2 .5)  in the 
limit R-+co. 

3. T h e l h i t R - + m  
We have seen in 0 2 that when R-+ co there exists a fast convective time scale 

t, = hU;l and a slow diffusion time scale h2v-1. In  such a situation we can look 
for a solution of the WKB type. Thus, following for example Seminara & Hall 
(1975), we drop the explicit dependence of Y on the fast time variable T and 
look for a solution of the form 

I 
Y = exp ( - i a ~ / :  c(7) d7) { $o(y, t )  + $.,(y, t )  + . . .). (3.1) 

However, it  is clear that the exponential term above represents an implicit 
dependence of Y on the fast time variable T. At any given value of the slow time 
variable t the flow is stable or unstable depending on whether the imaginary 
part of c( t )  is negative or positive respectively. It is not necessary at this stage 
to  expand c in powers of R-l since, as for the WKB solution expansion of an 
ordinary differential system, the resulting slow dependence of Y on t can be 
absorbed into the functions $o, $1, etc. Suppose that we fix a and R; then, for 
any given value oft, we must solve for the corresponding values of c, $o, $1, etc. 
If we substitute from (3.1) into (2.4) and ( 2 . 5 )  and equate terms of order RO we 
find that $o can be written in the form 

$0 = A(t)YO(Y, t ) ,  ( 3 4  
where A(t)  is a function of t  to be determined and Yo satisfies 

where N = d2/dy2-a2. (3.4) 
This is an ordinary differential system, parametrically dependent on t .  In  fact, 
the above differential system is identical to that which we would have obtained 
by making a quasi-steady approximation initially and solving the Orr- 
Sommerfeld equation at any value of t with the basic velocity profile u(y,t)  
as if it were steady. Thus we see that the first term of a WKB type of expansion 
is just the disturbance velocity obtained by a quasi-steady approach. 

We note at this stage that in (3.3) we have retained the viscous term R-lN2Y0 
even though it is formally of lower order in the Reynolds number. This term is 
required to smooth out any singularities of the inviscid operator in any critical 
layers and to enable the no-slip condition to be satisfied at the wall. A similar 
term is retained at  first order in the WKB-type solutions of Bouthier (1973) and 
Gaster (1974), who coiisidered the stability of a boundary layer on a flat plate. 
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c( t )  = f(a, R, t ) .  
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At any value oft, (3.3) determines an eigenrelation of the form 

(3.5) 

At this stage, following the suggestion of a referee, we could proceed by 
perturbing about the inviscid limit and expanding c(t) and Y o ( y ,  t )  in inverse 
powers of R. However such an approach would enable us to find only the upper 
branch of the neutral curve. Moreover, since the critical value of R is in fact of 
order 102, the numerical solution of (3.3) presents no great difficulties. Therefore 
we feel that, having solved (3.3) numerically, there is little to be gained by such 
a procedure. At order R-l we find that $l is determined by 

11.1 = a$l/ay = 0, y = I. 

Apart from the inhomogeneous terms in (3.6), the differential systems for Yo 
and @l are identical. In such circumstances we can show that (3.6) has a solution 
only if a certain orthogonality condition is satisfied. This condition is found to 
take the form 

where $2 is the adjoint function associated with Y, (y ,  t ) .  Thus we see that the 
orthogonality condition obtained at  order R-l determines the unknown function 
A ( t )  obtained a t  order RO. Indeed, it is an easy matter to show that the ortho- 
gonality condition determined at order R-" determines the unknown function 
o f t  obtained at  order R-"fl. 

4. Results and discussion 
Before discussing the numerical work it is necessary to define the term 'growth 

rate' for an unsteady flow. This point has been discussed in detail by Shen (1961) 
and Seminara & Hall (1975). If 8 is some property of the disturbance such as 
velocity, kinetic energy, etc., we define the growth rate G by 

G = + R e ( z ) .  aqat 

This definition leads to an expression for G(y,  t )  of the form 

G = Im{c(t) +R- l f ( y ,  t )  +O(RP)} .  (4.2) 

The function f ( y ,  t )  depends on which property of the flow we use to define G 
and in general will be a function of y and t. However, when G is defined in terms 
of some integrated property of the flow, such as kinetic energy, G is a function 
only oft. 

We ca,n see from (4.2) that as R+oo the growth rate differs from its quasi- 
steady value Im{c(t)} by only an amount of order R-l. Thus as a first approxi- 
mation we take G to be Im{c(t)>. Clearly, better approximations to G can be 
obtained by solving for the higher-order eigenfunctions k1, $2, etc. 
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FIGURE 2. The neutral curve a t  different values oft.  D , t = 0.015; U ,  t = 0.02; 
0, t = 0.023; 0, t = 0.03; 0, t = 0.04. 

We can then define an instantaneous neutral state by imposing the condition 

(4.3) Im(c(t)> = 0. 

For given values of a, €2 and t we solved (3.3) numerically to determine c ( t ) .  This 
was done using the complete orthonormalization procedure suggested by Davey 
(1973). Although not strictly necessary for R of order lo2, this procedure was re- 
quired for larger values o f R .  We restricted our attention to even solutions of (3.3). 

I n  figure 2 we show the instantaneous neutral curves for several values oft .  
As t increases from zero, the minimum value of R on each of these curves, which 
we denote by Rmin, first decreases and then increases. The critical time at which 
dRmi,/dt is zero is t = t* = 0.023 and is shown in figure 2 .  The corresponding 
values of R, cr and a, which we denote by RZ, c& and ag respectively, are 

(4.4) 

Thus, when R = RZ, all disturbances will be instantaneously damped when 
t + t*. When t = t* all disturbances except the one with a = a& will be damped. 
Suppose now that R > RZ. In  this case there will be a range o f  values o f  t ,  say 
[tl, t,], such that if t lies outside this range all disturbances will be instantaneousIy 
damped. For each value o f t  inside this range there will be an interval [al(t), a,(t)] 
such that all disturbances with a in this range instantaneously grow exponentially 
in time. 

Rz = 148.2, C& = -0,046, a,*, = 2.083. 
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FIGURE 3. The neutral curve for the most unstable profile, i.e. when t = 0.023. 

In figure 3 we show the neutral curve for t = t* for a large range of values of 
the Reynolds number. The lower branch of this curve asymptotes to the line 
a = 0 as R+w. The upper branch is asymptotic to a line a = a, as R-tco. 
We shall see later that this value of a can be obtained from inviscid stability 
theory. 

In figure 4 (a )  we have plotted uI, the velocity of the basic flow a t  the inflexion 
point, as a function of t .  I n  figures 4(d), (b)  and (c) we have plotted Bmin and 
the corresponding values of c, and a (i.e. c,,~, and amin respectively) as functions 
oft. We note that a,,, increases monotonically in time. We can see from figures 
4 ( a )  and ( b )  that uI and c, have a similar behaviour as functions oft .  

I n  figure 5 we have plotted the wave speed c, as a function of a for different 
values of t .  Apart from the most dangerous profile a t  t = 0.023 we have restricted 
ourselves to values of a less than 3. For a > 3 the upper branch of the neutral 
curve becomes flatter and finally asymptotes to the line a = ac. Thus the corres- 
ponding Reynolds numbers become large and the numerical solution of (3.3) 
requires a lot of computer time. However, it is likely that the behaviour exhibited 
by the profile a t  t = 0.023 is typical. We see that the wave speed of the most 
dangerous profile increases monotonically as a increases until it reaches a maxi- 
mum value. For this profile this maximum value of c, is quite close to zero. 
However it is clear from figure 5 that  for the other profiles this maximum value 
will be non-zero. After reaching a maximum the wave speed then decreases 
monotonically. The last point computed was for a = 4.2, which corresponds to a 
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FIGURE 4. The behaviour of (a) u,, (b) cImin, ( G )  amin and (d) R,, as functions oft .  

Reynolds number of about 2600. For values of a greater than 4.2 we expect the 
curve to follow the dashed path shown until it reaches the value corresponding 
to a = a,. We shall now show that this behaviour is consistent with inviscid 
stability theory. 

Suppose that we let R+m in (3.3) and retain only the boundary condition of 
zero normal velocity. We then find that Yo satisfies Rayleigh's equ a t' ion, as 
shown below, together with the boundary condition that Yo vanishes a t  
y =  + 1  

a2u 

aY2 
{u-c]i?Yo--Yo = 0, 

(4.5) 
Y,=o ,  y =  *I .  J 

It is well known (see for example Stuart 196 3) that if u has an inflexion point in 
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U 

FIGURE 5. The behaviour of c, as a function of u. *, value of c, at R = R ~ n ;  0, t = 0.04; 
U, t = 0.03; 0, t = 0.23; V, t = 0.02; A, t = 0.015. 

[0, I] the flow is unstable for all values of a < a,. The critical value a, is deter- 
mined by the variational condition 

[w2K(z) - w’2] dx 

(4.6) 

where w is such that 
and Kjx) is defined by 

w ( + - i )  = 0 

a2u 
K(2) = -7-/(U-U1). 

dY2 

Here uL is the velocity at the inflexion point. Thus the asymptote a = a, can be 
calculated by an inviscid approach. Moreover, it is known that the wave speed 
corresponding to  a = a, is just the velocity of the basic flow a t  the inflexion point. 
Thus, using (4.6), we can estimate a, by assuming some form for the function 
w(x). We again restrict ourselves to even disturbances and write 

w = (1 -y2) (1 +B&. 

Using this value of w we found the maximum of (4.6) as a function of B for the 
profiles at  different values of t .  The values of a, obtained are shown in table I 
and will depend on the assumed form of w. The exact value of a, can be obtained 
only by considering all possible even functions which satisfy the boundary 
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t E C  

0.015 4.9 
0.02 4.5 
0.023 4.6 
0.03 4.5 
0.04 5.0 

TABLE 1 

conditions. However, it has been observed (for example by Gregory, Stuart & 
Walker 1955) that the most simple functions usually give very accurate values 
for ac, so that the results shown in table 1 are probably accurate at least to  two 
significant figures. 

Thus, returning to figure 5, we can use the above results to predict the end 
point on the curve corresponding to t = 0.023. The value of uI a t  this time is 
- 0.043, so that the end point of the curve should be (4.6, - 0.043). The dashed 
line predicts that, when c, = -0.043, a takes the value 4.60. Thus we have 
extremely good agreement between the viscous results extrapolated to large 
Reynolds numbers and inviscid stability theory. 

Finally we make some further comments on figure 3. The neutral curve given 
by t = 0.04 is of particular interest. For this value o f t  the point of inflexion and 
the point of zero velocity occur a t  about the same value of y. The corresponding 
value of Rmin is about 20 % greater than RZ. The asymptote corresponding to  
this curve, though not shown, is such that c, tends t o  zero as R + co. This result 
can also be predicted by inviscid stability theory. A similar problem has been 
discussed by Gregory et al. (1955) in connexion with the stability of the boundary 
layer on a rotating disk. 

The authors acknowledge the advice of Professor J. T. Stuart and thank Dr A. 
Davey for some helpful comments in connexioii with the numerical work. 
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